Human Monocytes - CD14, CD16 - Ziegler-Heitbrock

Contact

Characterization of the monocyte-specific esterase (MSE) gene

Abstract

Carboxylic esterases are widely distributed in hematopoietic cells. Monocytes express the esterase isoenzyme (termed 'monocyte-specific esterase', MSE) that can be inhibited by NaF in the alpha-naphthyl acetate cytochemical staining. We examined the expression of MSE in normal cells and primary and cultured leukemia-lymphoma cells. The MSE protein was demonstrated by isoelectric focusing (IEF); MSE mRNA expression was investigated by Northern blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). The following samples were positive for MSE protein and Northern mRNA expression: 20/24 monocytic, 4/32 myeloid, and 1/20 erythroid-megakaryocytic leukemia cell lines, but none of the 112 lymphoid leukemia or lymphoma cell lines; of the normal purified cell populations only the monocytes were positive whereas, T, B cells, and granulocytes were negative; of primary acute (myelo) monocytic leukemia cells (CD14-positive, FAB M4/M5 morphology) 14/20 were Northern mRNA and 11/14 IEF protein positive. RT-PCR revealed MSE expression in 29/49 Northern-negative lymphoid leukemia-lymphoma cell lines. The RT-PCR signals in monocytic cell lines were on average 50-fold stronger than the mostly weak trace expression in lymphoid specimens. On treatment with various biomodulators, only all-trans retinoic acid significantly upregulated MSE message and protein levels but could not induce new MSE expression in several leukemia cell lines; lipopolysaccharide and interferon-gamma increased MSE expression in normal monocytes. Analysis of DNA methylation with sensitive restriction enzymes showed no apparent regulation of gene expression by differential methylation; the MSE gene is evolutionarily conserved among mammalian species; the half-life of the human MSE transcripts was about 5-6 h. The extent of MSE expression varied greatly among different monocytic leukemia samples. However, the MSE overexpression in a significant number of specimens was not associated with gene amplification, gross structural rearrangements or point mutations within the cDNA region. Taken together, the results suggest that MSE expression is not absolutely specific for, but strongly associated with cells of the monocytic lineage; MSE is either not expressed at all or expressed at much lower levels in cells from other lineages. The biological significance, if any, of rare MSE messages in lymphoid cells detectable only by the hypersensitive RT-PCR remains unclear. Further studies on the regulation of this gene and on the physiological function of the enzyme will no doubt be informative with respect to its striking overexpression in some malignant cells and to a possible role in the pathobiology of monocytic leukemias.

Authors: Uphoff, C.C., Hu, Z.-B., Gignac, S.M., Ma, W., Rainey, F.A., Kreutz, M., Ludwig, W.-D., Drexler, H.G.
Journal: Leukemia, 8: 1510-1526
Year: 1994
PubMed: Find in PubMed